DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion criteria to build, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes reinforcement discovering to enhance thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential identifying function is its support learning (RL) step, which was used to improve the design's responses beyond the basic pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, ultimately enhancing both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, meaning it's equipped to break down complex queries and factor through them in a detailed way. This directed reasoning process allows the design to produce more precise, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has captured the market's attention as a flexible text-generation design that can be incorporated into numerous workflows such as representatives, rational thinking and information analysis tasks.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion parameters, making it possible for efficient inference by routing queries to the most relevant specialist "clusters." This approach allows the model to focus on various problem domains while maintaining overall effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to simulate the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and examine models against crucial safety criteria. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit increase, develop a limitation boost request and reach out to your account group.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up authorizations to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent damaging content, and examine designs against crucial safety requirements. You can carry out safety steps for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general flow includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to invoke the model. It doesn't support Converse APIs and other tooling.
2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 design.
The model detail page supplies vital details about the model's capabilities, rates structure, and application guidelines. You can discover detailed use guidelines, including sample API calls and code bits for combination. The model supports various text generation jobs, consisting of content development, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT reasoning abilities.
The page also consists of implementation choices and licensing details to assist you get begun with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, select Deploy.
You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, go into a number of instances (in between 1-100).
6. For Instance type, choose your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure sophisticated security and infrastructure settings, including virtual personal cloud (VPC) networking, service role authorizations, and encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you may want to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the deployment is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in play ground to access an interactive interface where you can try out various prompts and change model parameters like temperature and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal results. For instance, material for reasoning.
This is an outstanding way to explore the design's thinking and text generation capabilities before incorporating it into your applications. The playground provides instant feedback, helping you understand how the design reacts to numerous inputs and letting you fine-tune your prompts for optimal outcomes.
You can quickly check the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up inference parameters, and sends a request to produce text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two convenient approaches: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you pick the approach that finest fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The model browser shows available designs, with details like the service provider name and design abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card shows crucial details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if relevant), showing that this model can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model
5. Choose the model card to view the design details page.
The model details page consists of the following details:
- The design name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you deploy the design, it's recommended to examine the model details and license terms to validate compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, utilize the automatically produced name or produce a customized one.
- For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the number of circumstances (default: 1). Selecting appropriate instance types and counts is crucial for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the model.
The deployment procedure can take numerous minutes to finish.
When implementation is total, your endpoint status will alter to InService. At this moment, the design is all set to accept reasoning requests through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the model using a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is offered in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as revealed in the following code:
Clean up
To prevent undesirable charges, finish the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed implementations section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the correct deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, raovatonline.org SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop innovative options using AWS services and sped up compute. Currently, he is focused on establishing strategies for fine-tuning and optimizing the inference efficiency of large language designs. In his downtime, Vivek delights in treking, seeing films, and trying different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing solutions that help customers accelerate their AI journey and unlock business worth.